

Version 1.0 Dated 03.10.2024

 Technical Guidelines on
SOFTWARE BILL OF MATERIALS

(SBOM)
 Version 1.0

Indian Computer Emergency Response Team (CERT-In)

Ministry of Electronics and Information Technology

Government of India

 Version 1.0 Dated 03.10.2024 Page 1

Table of Contents

1. Executive Summary ... 3

2. Overview of SBOM .. 5

2.1 Necessity and Utilization .. 5

2.2 Application & Scope .. 5

2.3 SBOM Implementation .. 7

3. Ecosystem ... 10

3.1 Levels of SBOM ... 10

3.2 Classification of SBOM ... 11

3.3 Roadmap for Organizations to develop and adopt SBOM .. 12

3.4 License Management .. 18

4. SBOM Preparation ... 20

5. Process and Practices of SBOM for Software Consumer/Developer/Integrator Organizations 28

5.1 Establish Roles and Responsibilities... 28

5.2 Roadmap for Navigating the Functions of SBOM ... 29

5.3 Secure SBOM Distribution: Access Control and Public/Private SBOM 31

5.4 SBOM Sharing ... 32

6. Vulnerability Tracking and Analysis in SBOM ... 34

7. Recommendations and Best Practices ... 37

7.1 Recommendations .. 37

7.2 Best Practices ... 39

 Version 1.0 Dated 03.10.2024 Page 2

Tables & Figures List

Table 1: Software Components and the SBOM Author Status in the aforementioned scenario 8

Table 2: Mapping of level as per Scenario for organization who created SBOM ... 11

Table 3: Syntax for Unique Identifier and Example ... 15

Table 4: Utility of Unique Identifiers .. 15

Table 5: Minimum Elements of SBOM .. 20

Table 6: Data Fields for the Components Utilised in Scenario by Organization ... 23

Table 7: Objectives for SBOM Concepts .. 30

Figure 1: Flow Chart for the Scenario ... 9

Figure 2: Levels of SBOM ... 10

Figure 3: SBOM Classification Aligned with SDLC Stages .. 12

Figure 4: Steps & its Activities for Developing SBOM Ecosystem at Organizational Level 13

Figure 5: Benefits of Automation Support in SBOM .. 26

Figure 6: Steps to Establish Roles & Responsibilities ... 28

Figure 7: Vulnerability Tracking and Analysis in SBOM Steps Sequence Example 34

file:///C:/Users/Muskan/Downloads/SBOM%20guidelines%20version%201.0%20(2).docx%23_Toc172543209

 Version 1.0 Dated 03.10.2024 Page 3

1. Executive Summary

 Software products are composed of many different components, some of which might come from

third party sources. These third-party components and dependencies can have vulnerabilities, which

attackers can exploit, leading to security incident or breaches. Key threats include attackers inserting

malicious code, vulnerabilities in outdated components, and breaches by compromised suppliers.

These issues can lead to data breaches, operational disruptions, and reputational damage.

These threats can be countered by maintaining visibility & transparency on software components

used for building or developing the software. Software Bill of Materials (SBOM) helps organizations

know exactly what components are in their software or assets, making it easier to identify and fix

vulnerabilities. By using SBOMs, entities can improve their software security and protect against

potential threats.

A Software Bill of Materials (SBOM) is list of all the components, libraries, and modules that make

up a software, providing transparency into its composition. Software composition is important to

comprehend as it grows more sophisticated and depends on more external components. In

cybersecurity, safeguarding software against cyberattacks requires an awareness of the

dependencies and components utilized in its construction. An SBOM is therefore a crucial

instrument in contemporary cybersecurity procedures.

An SBOM is vital for maintaining software security. It helps organizations understand what their

software is made of, manage potential risks, respond to security issues, and comply with regulations.

Following are the key benefits an organization can derive by implementing SBOM:

i. Enhanced Security Management: By knowing the components of the software, organizations

can identify which components might be vulnerable to security threats for mitigation.

ii. Effective Incident Response: In the event of a cyber-security incident, an SBOM assists in

speeding up incident response by providing detailed component information.

iii. Vulnerabilities Identification and Patch Management: By listing all components,

organizations can quickly spot and address known vulnerabilities in the software by patching

them.

 Version 1.0 Dated 03.10.2024 Page 4

iv. Supply Chain Security: Supply chain risks can be reduced significantly by gaining visibility into

third-party components used in creating a software.

v. Assist in Ensuring Compliance: SBOM helps organizations to streamline adherence to

security regulations, guidelines and best practices on software security by providing required

transparency in software composition.

vi. Improved Operational Efficiency: With a clear understanding of software components,

organizations can streamline their vulnerability management processes, saving time and

resources.

Indian Computer Emergency Response Team (CERT-In) has released following technical SBOM

guidelines for entities, particularly those in the public sector, government, essential services,

organizations involved in software export and software services industry.

Departments and organizations are encouraged to make the creation and provision of Software Bill

of Materials (SBOM) a mandatory standard practice as part of software procurement and software

development in order to enhance security and reduce the risk of cyber threats.

The following chapters delve into various technical aspects of the Software Bill of Materials (SBOM)

explaining its purpose, and its growing significance in the software supply chain ecosystem. Second

chapter provides overview of SBOM and discuss about the scope and implementation of SBOM,

followed by a chapter on SBOM ecosystem, which explains different levels and classifications of

SBOM. Subsequent chapters, explore the different standards and data formats employed for

representing SBOM information, and elaborate on the minimum elements, data fields, and

automation support. Objectives of all processes and practices involved in SBOM, secure SBOM

sharing, and distribution are elaborated in this document including approaches for vulnerability

tracking and analysis in SBOM. Finally, the last chapter of the document covers recommendations

and best practices for SBOM implementation.

 Version 1.0 Dated 03.10.2024 Page 5

2. Overview of SBOM

2.1 Necessity and Utilization

Increasing software complexity emphasizes the necessity of SBOM, serving as the foundation for

Software Composition Analysis (SCA) tools, aiding in vulnerability detection, license compliance

and instrumental in vendor risk management. The production of software-defined systems has

considerably expanded the cyber threat landscape, with adversaries increasingly targeting the

software supply chain to infiltrate sensitive systems and data.

In order to improve security, compliance, risk management, supply chain transparency, quality

assurance, interoperability, and vendor management in their software development and

procurement processes, departments/ organizations are encouraged to prioritize the creation and

provision of Software Bill of Materials (SBOM) as a standard practice. Organizations should

thoroughly analyze the critical components involved in any stage of the software lifecycle - including

design, development, analysis, deployment, maintenance, and update - and mandate SBOM usage.

SBOM help serve three main purposes, as follows:

• Implementing SBOM can assist government departments and organizations in making

informed pre-acquisition decisions for software purchases.

• Adopting SBOM can facilitate vulnerability management, asset tracking and compliance

across the government entities and essential sector organisations.

• SBOM implementation can aid organizations in Software development and maintenance of

their products.

It is recommended that all the Government, Public Sector and Essential Services Organizations

should include requirements for SBOM in all their software and solutions purchase/procurement. It

is also recommended that security teams of user organizations should include SBOM inventory in

work flow of vulnerability management.

2.2 Application & Scope

This guideline has been issued by Indian Computer Emergency Response Team (CERT-In) for the

following entities especially in the Government, Public Sector, Essential Services Organizations and

organizations involved with software exports and software services industry:

 Version 1.0 Dated 03.10.2024 Page 6

i. Software Consumer - Organizations that acquire software applications to support their

operations, enhance productivity, and achieve their business objectives.

ii. Software Developer- Organizations that develop customized software solutions.

iii. System Integrator/Software Reseller- Organizations that distribute the software products and

also provide value-added services including customization, integration, support, and training.

SBOM are becoming an essential tool for visibility, vulnerability patching, reducing exposure and

quick response. For instance, a typical organization relies on a vast network of interconnected

systems, end points, control systems, automation software, and operational technology (OT)

components. Maintaining accurate SBOM for these complex IT and OT environments allows

security teams to better understand their attack surface and respond more effectively to

vulnerabilities. This proactive approach helps organizations safeguard their operations and ensure

resilience against cyber threats.

For example, in financial institutions SBOM proves invaluable from a cybersecurity standpoint.

Banks and fintech companies often utilize a wide array of commercial off-the-shelf (COTS) software,

open-source libraries, and custom-developed components to power their digital services and

backend systems. Maintaining an up-to-date SBOM for this heterogeneous software landscape

enables security teams to rapidly identify and mitigate vulnerabilities, comply with industry

regulations, and better manage supply chain risks.

The use-cases of the SBOM, with respect to software development, supply chain management,

cybersecurity, and regulatory compliance are:

2.2.1 Software Development and Maintenance: SBOM provides a detailed inventory of the

components and dependencies that make up a software system. This information

allows developers to more effectively manage vulnerabilities, track licenses, and

monitor the provenance of their software. Maintaining an accurate and up-to-date

SBOM is crucial for organizations to understand their software supply chain risks and

take proactive measures so as to ensure the security and integrity of their applications.

2.2.2 Supply Chain Management: SBOM provides transparency into the software supply

chain, allowing organizations to assess the security and reliability of third-party

components. It helps in identifying potential risks associated with the use of third-party

 Version 1.0 Dated 03.10.2024 Page 7

libraries or components and facilitates informed decision-making about procurement

and vendor management.

2.2.3 Cybersecurity: SBOM helps in integration with existing security tools, automating

vulnerability detection, remediation and plays a crucial role in cybersecurity practices.

SBOM provides visibility into the software components and their dependencies,

enabling organizations to identify and mitigate security vulnerabilities effectively. By

having a comprehensive understanding of software composition, organizations can

quickly respond to security incidents, patch vulnerabilities, and ensure the integrity and

security of their software systems.

2.2.4 Regulatory Compliance: SBOM is increasingly becoming a requirement for regulatory

compliance in various industries, especially in sectors dealing with essential services

such as healthcare, finance, and government. Globally regulators are recognizing the

SBOM as a promising tool and are emphasizing SBOM adoptions through their

regulations such as EU Cyber Resilience Act.

2.2.5 Risk Management: SBOM supports risk management efforts by providing insights into

the software supply chain. Organizations can assess the potential risks associated with

specific software components, such as known vulnerabilities, license conflicts, or

deprecated libraries. By proactively managing these risks, organizations can enhance

the resilience of their software systems and minimize the likelihood of security breaches

or compliance issues.

2.2.6 Interoperability and Compatibility: SBOM facilitates interoperability and compatibility

testing by providing detailed information about software components and their versions.

This helps in ensuring that different software systems can work together seamlessly

without compatibility issues, and hence improving the overall quality and reliability of

software products.

2.3 SBOM Implementation

SBOM should be implemented for every new software component release and updated promptly for

any changes such as updates, upgrades, releases, and patches. The accuracy of SBOM is

maintained by updating whenever there is a new information about included components, regardless

of whether the components themselves have changed. When modifying existing components,

 Version 1.0 Dated 03.10.2024 Page 8

choose a consistent approach: either treat the change as a new component or update the existing

one. For clarity, use standardized versioning methods throughout.

Consider the following scenario in an organization:

A. Government organization GovInsights hires a software development company TechGenius

to develop a data analytics application DataAnalyzer

B. In order to develop the product: DataAnalyzer, Company: TechGenius uses the following

components:

1. SMS and Email services namely Postfix & Twilio SDK by the company:

MessageMaster.

2. Database component: PostgreSQL by the company: DataVault

3. Apache Tomcat Server provided by company: ServerSolutions which has used

many open source libraries for their server.

Various components/software in the aforementioned scenario and their corresponding

SBOM type and the status is provided in the table below:

Table 1: Software Components and the SBOM Author Status in the aforementioned scenario

S. No Name SBOM Author Status

1 SBOM for DataAnalyzer application To be developed by Company TechGenius

and will be provided to GovInsights

organisation along with the

product/application i.e. DataAnalyzer

2 SBOM for PostgreSQL Top level SBOM was developed by

TechGenius as DataVault never created a

SBOM for this component

3 SBOM for the platform Apache Tomcat

Server

Delivery SBOM was created by the company

ServerSolutions and shared with

TechGenius when the platform was

procured by TechGenius

4 SBOM for the Postfix & Twilio SDK Transitive SBOM was created by the

company TechGenius as SBOM was not

made available by MessageMaster

The interrelationships among the stakeholders and components in this scenario are visually

represented in Figure 1. As depicted, numerous entities within the SBOM ecosystem, function as

both providers and consumers of software. This entails not only utilizing information from an SBOM

provided by another entity but also participating in the creation of an SBOM for newly developed

components and subsequently sharing it with other entities. Ideally, the creator of a software

component should also be responsible for authoring the corresponding SBOM.

 Version 1.0 Dated 03.10.2024 Page 9

• SBOM Consumer: Must ask for complete SBOM.

• Software Developer: Must ensure that correct and complete SBOM is supplied to consumer.

Figure 1: Flow Chart for the Scenario

 Version 1.0 Dated 03.10.2024 Page 10

3. Ecosystem

SBOM ecosystem encompasses the network of stakeholders, tools, standards, and processes

involved in the creation, distribution, analysis, and utilization of SBOM across the software supply

chain. This section describes an approach for Software Consumer/Software Developer/ System

Integrator organizations to develop a SBOM ecosystem at an organizational level. This section also

explains different classification of SBOM.

3.1 Levels of SBOM

The different levels of SBOM, each offering varying degrees of granularity and complexity indicates

specific needs and the complexity of their respective software environments. Organizations should

choose to implement one or more SBOM levels to achieve the efficient balance of transparency, risk

management, and operational efficiency.

Figure 2: Levels of SBOM

Adopting a multiple SBOM approach can significantly enhance an organization's cyber resilience.

Organizations should create a customized SBOM for consumers, addressing security requirements

without exposing sensitive data. Concurrently, they should maintain an internal SBOM at the

"complete" level to identify and share vulnerability updates specific to that software in detail with the

consumer periodically on a mandatory basis. This approach balances cyber resilience, data

Top-Level SBOM

n-Level SBOM

Delivery SBOM

Transitive SBOM

Complete SBOM

Provides a general

summary of the

software elements

that are either

integrated or directly

used in a product.

Essential details like

component names,

versions, and their

interactions within the

software are usually

included.

Goes beyond top-level

overview to include

deeper details and

complexities.

The "N" in "N-level"

represents any arbitrary

level of depth, indicating

that the SBOM includes

information at multiple

tiers or levels of

granularity.

Describes every part,

library, and

dependency that is

part of a software

release or delivery

package. It offers

clarity regarding the

makeup of the

software that is being

supplied.

Includes not only the

direct dependencies

of a software

component but also

its indirect or

transitive

dependencies.

Offers a complete

and exhaustive list

of all the parts,

dependencies, and

related metadata

that are present in

a software system.

 Version 1.0 Dated 03.10.2024 Page 11

confidentiality, and collaborative security across the ecosystem, especially in scenarios where

organizations face constraints or apprehensions regarding data leaks and intellectual property theft

resulting from sharing complete software and dependency details.

Table 2: Mapping of level as per Scenario for organization who created SBOM

S. No Name SBOM level SBOM Author Status

1 SBOM for DataAnalyzer
application

Complete SBOM To be developed by
Company TechGenius and
will be provided to
GovInsights organization
along with the
product/application i.e.
DataAnalyzer

2 SBOM for PostgreSQL Top level SBOM Top level SBOM was
developed by TechGenius
as DataVault never created a
SBOM for this component

3 SBOM for the platform Apache
Tomcat Server

Delivery SBOM Delivery SBOM was created
by the company
ServerSolutions and shared
with TechGenius when the
platform was procured by
TechGenius

4 SBOM for the Postfix & Twilio
SDK

Transitive SBOM Transitive SBOM was
created by the company
TechGenius as SBOM was
not made available by
MessageMaster

3.2 Classification of SBOM

SBOM classifications align with stages in the software development lifecycle, each providing distinct

data and insights. Different classifications of SBOM have been depicted in Figure 3.

3.2.1 The Design SBOM captures planned components, even before they exist.

3.2.2 The Source SBOM reflects the development environment, including source files and

dependencies.

3.2.3 The Build SBOM is generated during the build process, incorporating details like

source files, dependencies, and pre-built components.

3.2.4 The Analyzed SBOM is created by inspecting final software artifacts post-build.

 Version 1.0 Dated 03.10.2024 Page 12

3.2.5 The Deployed SBOM provides an inventory of the software installed and configured

on a specific system, combining information from various SBOM types and taking into

account the deployment environment.

3.2.6 The Runtime SBOM is created by monitoring active software components, including

their external interactions and dynamically loaded dependencies, during runtime

execution.

Figure 3: SBOM Classification Aligned with SDLC Stages

3.3 Roadmap for Organizations to develop and adopt SBOM

To establish a SBOM ecosystem within an organization the development of an SBOM program

should follow a phased approach, starting from a basic foundation (START), then building upon it

(PROGRESS), and ultimately reaching a mature and scalable SBOM implementation (ADVANCE).

The order of activities is indicative. Organization may choose to move an activity up or down

depending on their overall security requirements, project timeline and resource availability.

Design
SBOM

Source
SBOM

Build
SBOM

Analyzed
SBOM

Deployed
SBOM

Runtime
SBOM

 Version 1.0 Dated 03.10.2024 Page 13

Figure 4: Steps & its Activities for Developing SBOM Ecosystem at Organizational Level

3.3.1 PHASE-1 (START): The foundational activities will lay the groundwork for the SBOM program.

It is likely the first SBOM will be acquired from suppliers during the procurement process. Since the

software can vary in terms of its architecture, existing resources, budget, availability of qualified

individuals, the intent of this phase is to establish methods that enable kick-start of the SBOM

ecosystem within an organization.

3.3.1.1 Identify Critical Assets and Develop a Project Plan: Develop a comprehensive

project plan that define roles, responsibilities, timelines, and resource

requirements. Alongside the project plan, identify the change management

requirements to ensure stakeholder are onboard for the new SBOM processes.

3.3.1.2 Determine the SBOM format and minimum requirement: Defining the SBOM

format and minimum data requirements before its creation is critical. It ensures a

standardized, machine-readable structure that enables consistent sharing and

processing across the supply chain.

3.3.1.3 Identify security requirements, secure storage and tooling: This entails

determining the appropriate classification and handling procedures in line with site

security policies. Next, organizations should establish secure storage for SBOM,

initially segregating individual SBOM in dedicated repositories. As the SBOM

program matures, integration with asset management applications should be

START

(Foundational Activities)

• Identify Critical Assets and
Develop a Project Plan.

•Determine the SBOM format
and minimum requirements.

• Identify security requirements,
secure storage and tooling.

•Acquire SBOM as a part of
procurement process.

PROGRESS

(Building upon it)

•Secure Installation and
Operation Guidance
Development.

•Assign unique identifiers to
each component.

•Mapping of supplier’s SBOM
with consumer’s internal SBOM.

•Preparation of SBOM

• Integrate SBOM in each phase
of Secure Software
Development Lifecycle.

•Establish secure configuration
management.

ADVANCE

(Mature & Scalable SBOM)

•Enhance vulnerability tracking
processes.

•Enhance Incident response
process.

•Analysis and review for
updation of existing SBOM
periodically.

•Maintain awareness of emering
software components and
industry advancements.

 Version 1.0 Dated 03.10.2024 Page 14

pursued, along with linking to other security-related information like vulnerability

data.

3.3.1.4 Acquire SBOM as a part of procurement process: By requiring SBOM provision

by suppliers in purchase orders or contracts, specifying SBOM elements, delivery

timeframe, and delivery method, transparency is ensured, facilitating the SBOM

integration process.

3.3.2 PHASE – 2 (PROGRESS): This involves sustaining activities resulting in establishment of

secure installation and configuration management, along with integrating unique component

identification to address Supplier and Component namespace issues. Integration with Secure

Software Development Life Cycle (SSDLC) by Software Developer Organization will begin to

provide actionable security information to secure the software in its build phase.

3.3.2.1 Secure Installation and Operation Guidance Development: A comprehensive

checklist for secure software installation and operation, tailored to the target

consumer's technology sector and usage needs should be created by the supplier

in correlation with consumer organization. To ensure secure operations, a set of

key checklist pointers can be derived from the Guidelines for Secure Application

Design, Development, Implementation & Operations guidelines, highlighting

essential considerations that should be addressed throughout the deployment and

operational phases of an application's lifecycle.

3.3.2.2 Assign unique identifiers to each component: Consumers may overlook

security updates or vulnerabilities if unaware of rebranding, leaving them

vulnerable to exploitation. This makes it challenging for consumers to research the

accurate data fields, such as current supplier and component names, to include in

their own SBOM. Supplier and component name changes would result in an SBOM

revision and a link from the old SBOM to its successor to maintain revision history.

However, in cases where the historical context may be unknown to the consumer,

mapping older names to current ones can be problematic, especially if the original

supplier no longer exists. To address this, a unique identifier should be created.

This identifier may follow the following structure:

 Version 1.0 Dated 03.10.2024 Page 15

Table 3: Syntax for Unique Identifier and Example

The unique identifier for the scenario would be:

pkg:supplier/ApacheSoftwareFoundation/ApacheTomcat@9.0.71?arch=x86_64&os=linux#server/

webapps

Table 4: Utility of Unique Identifiers

Field Description Example

scheme
Indicates the format of the identifier, in this case, pkg

for the Package URL (PURL) format.
pkg

type

Specifies the type of the identifier, in this case,

supplier to represent the supplier of the software

component.

Supplier

namespace
Identifies the name of the organization or entity that

is the supplier of the software component.

Apache Software

Foundation

name Provides the name of the software component itself. Apache Tomcat

version
Denotes the specific version of the software

component.
9.0.71

qualifiers

(optional)

Allows for the inclusion of additional contextual

information about the software component, such as

architecture, operating system, or other metadata.

arch=x86_64&os=linux

subpath

(optional)

Can be used to specify a subpath or location within

the software component, if applicable.
#server/webapps

Issue Apache Tomcat Example How the Unique Identifier Helps

Ownership and

Branding Changes

Initially, Apache Tomcat was

developed and maintained by

the Apache Software

Foundation. Over time, the

ownership could change, and

the new owner might rebrand

the project (e.g., "TomcatX" or

"Acme Tomcat").

The unique identifier pkg:supplier/Apache

Software Foundation/Apache

Tomcat@9.0.71?arch=x86_64&os=linux would

still be valid, even with ownership and branding

changes.

The consumer can update the SBOM with the new

identifier pkg:supplier/Acme

Corp/TomcatX@9.0.71?arch=x86_64&os=linux,

 Version 1.0 Dated 03.10.2024 Page 16

3.3.2.3 Mapping of supplier’s SBOM with consumer’s internal SBOM: The consumer

organization should map and develop an internal SBOM on the basis of SBOM

provided by the supplier. It should also include author name (personnel of

consumer organization) and timestamp to trace the integrity and efficient updating

of the developer of that internal SBOM.

3.3.2.4 Preparation of SBOM: SBOM should be prepared by both supplier and consumer

organization. Identify installed components with vulnerabilities by correlating the

known vulnerability data and vendor vulnerability attestations. Known vulnerability

data is available through various sources, including vendor notifications, third-party

notifications, and data repositories. On this basis, a complete-level SBOM should

be generated either internally by organization or externally by the software vendor

for enhancing the security and visibility of supply chain attacks.

3.3.2.5 Integrate SBOM in each phase of Secure Software Development Lifecycle

(SSDLC): SBOM can be incorporated into each phase of the SSDLC by Software

Developer organization in such a way that during design, SBOM should inform

decisions regarding component selection and potential security risks. The use of

SBOM during software development can improve efficiencies and provide greater

insight into build and source components, as well as product functionality, for both

the developer and user.

Issue Apache Tomcat Example How the Unique Identifier Helps

maintaining the linkage between old and new

component names.

Version Ambiguity The vendor releases a new

version of Apache Tomcat (e.g.,

10.0.0), but keeps the same

component name.

The unique identifier pkg:supplier/Apache

Software Foundation/Apache

Tomcat@9.0.71?arch=x86_64&os=linux clearly

indicates the specific version (9.0.71).

When a new version is released, the consumer can

update the SBOM with pkg:supplier/Apache

Software Foundation/Apache

Tomcat@10.0.0?arch=x86_64&os=linux,

eliminating version ambiguity.

 Version 1.0 Dated 03.10.2024 Page 17

3.3.2.6 Establish secure configuration management: Implement stringent access

controls encryption, periodic audits of software, and integration with security

frameworks to ensure secure configuration management in SBOM.

3.3.3 PHASE-3 (ADVANCE): Enhancing activities related for monitoring of vulnerabilities and

seamless integration of SBOM with security orchestration tools for vulnerability management and

incident response.

3.3.3.1 Enhance vulnerability tracking processes: Capture vulnerability information

associated with SBOM. Historical vulnerability information should be integrated

into the SBOM ecosystem, and specialists should have procedures such as cross-

referencing the identified vulnerabilities with the components listed in the SBOM

repository and checking the equipment database for relevant configuration data to

assess the impact and potential mitigation measures for tracking and analysis of

known-vulnerabilities.

3.3.3.2 Enhance Incident response process: CERT-In issues alerts, vulnerabilities

notes and advisories on various threats. Often, these threats are associated with

newly disclosed software vulnerabilities. Organization should establish threat

hunting teams that use this information to determine if their organizations are

vulnerable to the newly discovered threat and whether they have been

compromised by it.

3.3.3.3 Periodic Analysis and Review for Updating Existing SBOM: This involves

checking if software components and their dependencies are as per latest records,

ensuring timely updates.

3.3.3.4 Maintain awareness of emerging software components and industry

advancements: Organizations are encouraged to uphold SBOM awareness

programs either independently or in collaboration to third-party organizations to

share the information on emerging SBOM formats, data elements, its

implementation in organization in adherence to challenges faced by SBOM

practitioners.

 Version 1.0 Dated 03.10.2024 Page 18

3.4 License Management

License management is an early use case for SBOM, helping organizations with large and complex

software portfolios track the licenses and terms of their diverse software components, especially for

open-source software. SBOM can convey data about the licenses for each component. This data

can also allow the consumer to know if the software can be used as a component of another

application without creating legal risk. License information for components included in software can

be checked to prevent negligence in compliance, thus reducing the risk of license violations and the

workloads required for license management. Following practices streamlines license management

processes and helps mitigate risks associated with non-compliance.

a) Consumer should be able to view the licenses of all individual components within a Product

being evaluated, alongside the Product's own license. This provides the user with better

insight when selecting a product and determining the suitable license arrangement for their

business requirements or application

b) Identify each software license using an identifier (e.g. SPDX identifier). These identifiers,

along with expressions, serve as unique codes that represent specific license terms and

conditions. By leveraging these identifiers, organizations should efficiently manage and

understand the licensing obligations associated with their software assets.

c) An alternative license database should be considered, if the license identifiers cannot be

found in the primary one, such as the Scancode LicenseDB AboutCode. These alternative

identifiers should be prefixed (e.g. "LicenseRef-scancode-") to indicate their origin, thus

facilitating mapping and understanding.

d) When encountering licenses that are not recognized by established lists like SPDX,

organizations should assign a unique identifier. This ensures proper identification and

tracking of unknown licenses within their systems.

e) When modifying licenses with placeholders or templates, it is recommended to ensure that

these changes don't alter the fundamental terms of the license. Instead, they should be

considered part of the original license identified by its unique identifier, like those provided by

SPDX License Expressions. This helps maintain clarity and consistency in license

management practices.

f) When dealing with multiple licenses for software, it is important to use operators (e.g. SPDX

operators) to combine them correctly. These operators help link different license identifiers

 Version 1.0 Dated 03.10.2024 Page 19

together, ensuring clarity and consistency in license expressions. This ensures that the

resulting license expressions accurately represent the licensing terms applicable to the

software.

g) When managing licenses, any exception clauses attached to a license text should be linked

to the main license identifier using appropriate operators such as "WITH” for SPDX operators.

Additionally, the exception clause names should be described with identifiers following the

established requirements for license identification.

h) When making slight changes to a license text, if the modifications do not significantly alter

the meaning of the original license, it is recommended to use the same identifier as the

original license.

 Version 1.0 Dated 03.10.2024 Page 20

4. SBOM Preparation

4.1 Minimum Elements of SBOM

Minimum Elements of the SBOM. dictates the “Data Fields” as the necessary information

related to a component in a software to be considered With “Automation Support” detection and

management can be enhanced by integrating with security orchestration tools and the “Process and

Practice” for implementation of the SBOM in the organization. The “Minimum Elements” categories

and definitions are as follows.

Table 5: Minimum Elements of SBOM

Minimum

Elements
Overview Definition

Data Fields Document baseline information

about each component that

should be tracked.

This baseline component information includes:

• Component Name

• Component Version

• Component Description

• Component Supplier

• Component License

• Component Origin

• Component Dependencies

• Vulnerabilities

• Patch Status

• Release Date

• End-of-Life (EOL) Date

• Criticality

• Usage Restrictions

• Checksums or Hashes

• Comments or Notes

• Author of SBOM Data

• Timestamp

• Executable Property

• Archive Property

 Version 1.0 Dated 03.10.2024 Page 21

Minimum

Elements
Overview Definition

• Structured Property

• Unique Identifier

Automation

Support

Support automation, including

via automatic generation and

machine-readability to allow for

scaling across the software

ecosystem.

Data formats used to generate and consume

SBOM include

• Software Package Data Exchange

(SPDX)

• CycloneDX

Practices

and

Processes

Define the operations of SBOM

requests, generation and use.

Organizations definition of SBOM operation

procedure should be based on:

• Frequency

• Depth

• Known Unknowns

• Distribution and Delivery

• Access Control

• Accommodation of Mistakes

4.2 Data Fields

Data fields contain a baseline information regarding each component that needs to be tracked and

maintained. The organizations can create a comprehensive inventory of software components,

dependencies, and associated metadata, enabling better transparency, security, and risk

management throughout the software development lifecycle.

Enabling adequate identification of these components is the aim of data fields, as it facilitates their

tracking throughout the software supply chain and allows them to be mapped to other useful data

sources like vulnerability or license database. The baseline components information include:

1. Component Name: The name of the software component or library included in the SBOM.

2. Component Version: The version number or identifier of the software component.

 Version 1.0 Dated 03.10.2024 Page 22

3. Component Description: A brief description or summary of the functionality and purpose

of the software component.

4. Component Supplier: The entity or organization that supplied the software component,

such as a vendor, third-party supplier, or open-source project.

5. Component License: The license under which the software component is distributed,

including details such as the license type, terms, and restrictions.

6. Component Origin: The source or origin of the software component, such as whether it is

proprietary, open-source, or obtained from a third-party vendor.

7. Component Dependencies: Any other software components or libraries that the current

component depends on, including their names and versions.

8. Vulnerabilities: Information about known security vulnerabilities or weaknesses associated

with the software component, including severity ratings and references to security

advisories or CVE identifiers.

9. Patch Status: The patch or update status of the software component, indicating whether

any patches or updates are available to address known vulnerabilities or issues.

10. Release Date: The date when the software component was released or made available for

use.

11. End-of-Life (EOL) Date: The date when support or maintenance for the software

component is scheduled to end, indicating the end of its lifecycle.

12. Criticality: The criticality or importance of the software component to the overall

functionality or security of the application, often categorized as critical, high, medium, or

low.

13. Usage Restrictions: Any usage restrictions or limitations associated with the software

component, such as export control restrictions or intellectual property rights.

14. Checksums or Hashes: Cryptographic checksums or hashes of the software component

files to ensure integrity and authenticity.

15. Comments or Notes: Additional comments, notes, or annotations relevant to the software

component or its inclusion in the SBOM.

16. Author of SBOM Data: The name of the entity that creates the SBOM data for this

component.

17. Timestamp: Record of the date and time of the SBOM data assembly.

 Version 1.0 Dated 03.10.2024 Page 23

18. Executable Property: Attributes indicating whether a component within an SBOM can be

executed.

19. Archive Property: Characteristics denoting if a component within an SBOM is stored as an

archive or compressed file.

20. Structured Property: Descriptors defining the organized format of data within a component

listed in an SBOM.

21. Unique Identifier: A unique identifier is a distinct code assigned to each software

component, structured as

"pkg:supplier/OrganizationName/ComponentName@Version?qualifiers&subpath," aiding in

tracking ownership changes and version updates, thus ensuring accurate and consistent

software component management.

Table 6: Data Fields for the Components Utilised in Scenario by Organization

Component Name Apache Tomcat PostgreSQL Postfix Twilio SDK

Version 9.0.41 13.3 3.5.6 7.17.0

Description Open-source Java

web server

Open-source

relational database

management system

Open-source mail

transfer agent

(MTA)

Twilio API

SDK for

sending and

receiving

SMS

Supplier Apache Software

Foundation

PostgreSQL Global

Development Group

Postfix

Development

Team

Twilio Inc.

License Apache Software

Foundation

PostgreSQL License IBM Public

License v1.0

Apache

License 2.0

Origin Apache License 2.0 Open-source

community

Open-source

community

Vendor

Dependencies Open-source

community

None None None

Vulnerabilities Java Runtime

Environment (JRE)

None reported None reported None

reported

Patch Status None reported Up to date Up to date Up to date

Release Date Up to date May 7, 2021 October 15, 2020 January 10,

2022

 Version 1.0 Dated 03.10.2024 Page 24

Component Name Apache Tomcat PostgreSQL Postfix Twilio SDK

End of Life Date March 22, 2021 May 7, 2026 October 15, 2025 January 10,

2027

Criticality March 22, 2025 High High Medium

Usage Restrictions High None None Requires

Twilio

account for

API access

Checksums None SHA-256:

d7f5a6b198e75c1f4

38d0fa158a9bc92

SHA-256:

3bd5a7f02a8102

2a47a7e6cb9cb5

e2b8

SHA-256:

9f3b2e5ab24

a5e68a3bda

6a12c1febd1

Hashes SHA-256:

7f87a8b8ed5c235467

89b8d7586219a1

MD5:

b8c78139eef440fb3

cb074e199b1e923

MD5:

e57cb8d0ae875fd

a9d60291f10689

e4b

MD5:

6a8c4db98ce

5f0c3a92416

727bc80a5e

Comments MD5:

8937d8b1a947f45d79

e457b91c2e6543

Supports SQL

queries and ACID

transactions.

Facilitates the

delivery of emails

between mail

servers.

Integrates

SMS

functionality

into

applications

via Twilio's

cloud

communicati

ons platform.

Executable

Property

Yes - Contains

executable binaries

like catalina.sh and

startup.bat.

No - Binaries like

postgres are not

directly executable.

No - Binaries like

postfix are not

directly

executable.

No - The SDK

itself is not

directly

executable,

but contains

libraries and

modules that

can be used

by

applications.

 Version 1.0 Dated 03.10.2024 Page 25

Component Name Apache Tomcat PostgreSQL Postfix Twilio SDK

Archive Property No - Distributed as a

directory structure.

No - Distributed as a

set of installation

files including

postgresql.conf.

No - Distributed

as a set of

installation files

including main.cf.

Yes -

Distributed as

a package or

library

archive file,

such as

twilio-

python.tar.gz

or twilio-

java.jar.

Structured

Property

Yes - Configuration

files such as

server.xml have

defined elements.

Yes - Database

schemas and files

like schema.sql have

structured formats.

Yes -

Configuration files

such as main.cf

and master.cf

have structured

formats.

Yes - The

SDK includes

structured

files defining

API methods

and

configuration

s, such as

twilio.py or

twilio.xml.

Unique Identifier pkg:supplier/ApacheS

oftwareFoundation/Ap

acheTomcat@9.0.71?

arch=x86_64&os=linu

x#server/webapps

pkg:supplier/Postgre

SQLGlobalDevelop

mentGroup/Postgre

SQL@13.5?arch=x8

6_64&os=linux

pkg:supplier/Postf

ixFoundation/Post

fix@3.6.2?arch=x

86_64&os=linux

supplier/Twili

oInc/TwilioS

DK@1.20.0?

arch=x86_64

&os=linux

4.3 Automation Support

Supporting automation, such as automatic generation and machine-readability, enables scaling

across software ecosystems and organizational boundaries. It allows for seamless integration of

SBOM data into various tools and processes, facilitating collaboration and visibility across the

software supply chain

 Version 1.0 Dated 03.10.2024 Page 26

Component
Discovery

Version Tracking

Dependency
Analysis

Vulnerability
Assessment

License
Compliance

Automated tools can

scan software

packages,

repositories, and

source code to

identify and

catalogue software

components

automatically. This

helps in creating an

initial inventory of

components without

manual intervention.

Automation tools can

monitor software

repositories and

package managers

to track changes and

updates to software

components. This

ensures that SBOM

remain up-to-date

with the latest

versions of

components,

reducing the risk of

using outdated or

vulnerable software.

Automated

dependency analysis

tools can identify and

document

dependencies

between software

components

automatically. This

helps in

understanding the

complex

relationships

between

components and

assessing the

potential impact of

changes or

vulnerabilities.

Automated

vulnerability

scanning tools can

analyze software

components against

known vulnerability

databases, such as

the National

Vulnerability

Database (NVD) or

Common

Vulnerabilities and

Exposures (CVE).

Automated license

scanning tools can

analyze software

components to

identify the licenses

under which they are

distributed. This

helps in ensuring

compliance with

licensing

requirements and

avoiding legal issues

associated with the

unauthorized use of

proprietary or open-

source software.

SBOM Generation

Integration with
DevOps Pipelines

Reporting and
Visualization

Integration with
Security

Orchestration
Platforms

Monitoring and
Maintenance

Automated SBOM

generation tools can

aggregate

information from

various sources,

such as software

repositories,

package manifests,

and vulnerability

databases, to create

comprehensive

SBOM automatically.

This streamlines the

process of SBOM

creation and ensures

consistency and

accuracy across

multiple projects.

Automation tools can

integrate SBOM

generation and

analysis into DevOps

pipelines, allowing

for continuous

monitoring and

assessment of

software

components

throughout the

development

lifecycle. This

enables proactive

identification and

mitigation of security

risks and compliance

issues.

Automated reporting

and visualisation

tools can generate

actionable insights

from SBOM data,

such as identifying

high-risk

components,

tracking compliance

status, and

visualising

dependency graphs.

This helps

stakeholders make

informed decisions

and prioritize efforts

for risk mitigation and

remediation.

Automation tools can

integrate with

security

orchestration

platforms to

automate

remediation

workflows based on

SBOM analysis

results. This enables

automatic

deployment of

patches, updates, or

configuration

changes to mitigate

security

vulnerabilities

quickly.

Automation tools can

facilitate continuous

monitoring and

maintenance of

SBOM by

automatically

updating component

information, tracking

changes, and

generating alerts for

anomalies or

compliance

violations.

 Figure 5: Benefits of Automation Support in SBOM

 Version 1.0 Dated 03.10.2024 Page 27

Utilizing SBOM data will require tooling, which calls for consistent data formats and implementation.

Automation can support various aspects of SBOM creation, maintenance, and utilization.

Organizations may include this feature in their current vulnerability management procedures and

audit compliance with security policies in real time. Both will depend heavily on automation, which

calls for standard, machine-readable data formats. The standard format used to generate and

consume SBOM is:

1. Software Package Data eXchange (SPDX)

2. CycloneDX

 Version 1.0 Dated 03.10.2024 Page 28

5. Process and Practices of SBOM for Software

Consumer/Developer/Integrator Organizations

This section discusses how practitioners should perceive SBOM and what processes need to be

established to address it in practice. The topics mentioned in this chapter are derived from the

analysis of SBOM practices from SBOM generation, distribution and sharing, validation and

verification, and vulnerability and exploitability management.

5.1 Establish Roles and Responsibilities

To implement the SBOM, identify the necessary roles and responsibilities. This should include a

management sponsor, project lead, systems engineer, design engineer, procurement specialist, and

operations representative. Involve additional support, such as IT, cybersecurity, and maintenance

personnel, based on the project timeline and security requirements. Ensure clear ownership and

collaboration across these roles to drive the SBOM implementation and integration with existing

processes.

Figure 6: Steps to Establish Roles & Responsibilities

a) Identify key Stakeholders: To identify the key stakeholders for an SBOM program,

organizations should consider representatives from software development, IT operations,

security, procurement, business leadership, compliance teams and regulatory bodies.

Monitor and Refine

Establish Governance

Identify Key Stakeholders
Define SBOM-Related

Responsibilities

Enable Collaboration &
Provide Training and

Resources

Assign Roles and
Ownership

 Version 1.0 Dated 03.10.2024 Page 29

Include cybersecurity specialists to provide expertise on secure data handling, vulnerability

management, and risk assessment.

b) Define SBOM-Related Responsibilities: Outline tasks such as SBOM generation,

consumption, vulnerability monitoring, supplier engagement, and secure data management.

Assign cybersecurity-focused responsibilities, such as: Classifying SBOM data based on

sensitivity and risk, implementing secure SBOM storage and access controls, Integrating

SBOM data with vulnerability management and incident response processes

c) Assign Roles and Ownership: Designate a cybersecurity specialist as the SBOM program

owner or co-owner to ensure security is embedded throughout. Allocate SBOM

responsibilities to stakeholders based on their expertise, with the cybersecurity team playing

a key role.

d) Establish Governance: The governance structure should involve key stakeholders from

across the organization as discussed in 1st pointer. This governance body would then develop

SBOM-specific policies, standards, processes and assign clear accountability, and

implement controls to secure the SBOM data.

e) Enable Collaboration: Foster cross-functional collaboration between software, IT, and

cybersecurity teams to address SBOM security challenges. Encourage knowledge sharing

on secure SBOM practices, emerging threats, and best-in-class security controls.

f) Provide Training and Resources: Offer specialized training on SBOM security requirements,

secure data handling, and integrating SBOM with each phase of SSDLC. Equip the team with

secure SBOM generation, storage, and consumption tools, as well as vulnerability

management and threat intelligence resources.

g) Monitor and Refine: Organizations should conduct regular audits and assessments. This

should also involve continuously assessing the SBOM program's security posture and make

adjustments to address evolving threats and compliance requirements.

5.2 Roadmap for Navigating the Functions of SBOM

This section explores the goals of the three main aspects of SBOM namely practices, tooling

support, and associated issues, aiming to offer Software Developer/Consumer/Integrator

organizations a roadmap for navigating the diverse functions and what exactly to be achieved in that

specific aspect of SBOM in practice.

 Version 1.0 Dated 03.10.2024 Page 30

Table 7: Objectives for SBOM Concepts

SBOM

Functions

Objectives

Benefits • Improved transparency and visibility into software products should be

the primary benefits of SBOM, which forms the foundation for a

potential SBOM-centric ecosystem.

• The advantages of SBOM should outweigh the costs associated with

learning and managing SBOM and their supporting tools.

Adoption • The third-party (open source or proprietary) components should be

equipped with SBOM.

• SBOM should be generated for all software products (produced/used)

within an organization.

Generation

Points

• SBOM should be generated at different stages of the software

development lifecycle.

• A new SBOM should always be re-generated when there is any

change to software artifacts.

Data Fields &

standardization

• SBOM should be customized with more organization-specific use

cases in terms of data fields and format in addition to an existing

minimum number of elements and standard formats.

Distribution • Generate SBOM for internal use, ensuring proper access control, and

consider tailoring content for sharing partial SBOM when distributing

proprietary software or components.

Validation • Supplier should validate SBOM to ensure its integrity.

Vulnerability &

Exploitability

• Supplier should provide a Vulnerability Exchange Document to the

consumer organization.

Tools • Integrate SBOM consumption with current tools like vulnerability or

configuration management systems.

 Version 1.0 Dated 03.10.2024 Page 31

5.3 Secure SBOM Distribution: Access Control and Public/Private SBOM

To implement access control, precise terms must be defined for SBOM data integration. These

terms can be established through licensing, contracts, or other existing mechanisms governing

software usage and rights. Suppliers, including open-source maintainers, may prefer public SBOM

data, while others might opt for confidentiality, limiting access to select users. By following these

steps, organizations should implement a secure and controlled distribution of SBOM, ensuring that

sensitive information is accessible only to authorized parties while maintaining transparency and

trust in the software supply chain.

5.3.1 Access Control:

5.3.1.1 Define a role-based access control (RBAC) system to manage access to the

SBOM data.

5.3.1.2 Identify the different stakeholders (e.g., developers, security teams, supply

chain partners) and their respective access requirements.

5.3.1.3 Assign appropriate permissions and privileges to each role, such as Read-only

access for general users, Edit and update access for SBOM maintainers,

Restricted access for sensitive or confidential SBOM data

5.3.2 Public and Private SBOM:

5.3.2.1 Maintain two versions of the SBOM:

a) Public SBOM: This version contains non-sensitive information that can be

shared publicly with all stakeholders.

b) Private SBOM: This version includes sensitive or confidential information,

such as vulnerabilities, that should be accessed only by authorized parties.

5.3.3 Secure Distribution Mechanisms:

5.3.3.1 Leverage secure communication protocols, such as HTTPS, to transfer the

SBOM data between parties.

5.3.3.2 Implement digital signatures or encryption to ensure the integrity and

confidentiality of the SBOM data.

5.3.3.3 Use secure file-sharing platforms or tools that provide access control and audit

capabilities.

5.3.4 Automated SBOM Generation and Updates:

 Version 1.0 Dated 03.10.2024 Page 32

5.3.4.1 Integrate the SBOM generation process into the software development lifecycle

(SDLC) to ensure the SBOM is up-to-date and accurate.

5.3.4.2 Automate the process of updating the SBOM when changes occur in the

software components or dependencies.

5.3.5 SBOM Consumption and Verification:

5.3.5.1 Provide clear guidance and documentation on how to consume and verify the

SBOM data.

5.3.5.2 Develop processes and tools to enable stakeholders to validate the SBOM

against their specific requirements and security policies.

5.3.6 Monitoring and Auditing:

5.3.6.1 Implement logging and auditing mechanisms to track access and changes to

the SBOM data.

5.3.6.2 Regularly review access logs and audit trails to ensure compliance with the

defined access control policies.

5.3.7 Incident Response and Remediation:

5.3.7.1 Establish incident response procedures to handle security incidents or

breaches related to the SBOM data.

5.3.7.2 Implement processes to quickly assess the impact of vulnerabilities or incidents

and coordinate remediation efforts with relevant stakeholders.

5.4 SBOM Sharing

In order to increase the transparency, security and compliance in the software supply chain it is

necessary to share the SBOM among the suppliers of the software and the users.

Sharing SBOM documents internally within an organization enables development, security,

operations, and legal teams to gain insights into the software components and dependencies used

in their projects. This promotes transparency, fosters collaboration, and facilitates compliance with

licensing and security requirements. Which in turn will increase the trust among the external

partners, suppliers, and vendors. SBOM provides auditable evidence of software composition,

licensing, and security measures implemented within a software product or system.

SBOM document sharing can be facilitated through various channels and formats, including:

 Version 1.0 Dated 03.10.2024 Page 33

1. Secure File Sharing Platforms: These platforms should provide a secure and controlled

environment for sharing SBOM documents with authorized parties.

2. API Integration: APIs (Application Programming Interfaces) should allow for the automated

and secure exchange of SBOM data between different systems or platforms.

3. Collaboration Tools: Collaboration tools, such as project management platforms or

document-sharing applications, can facilitate secure SBOM sharing within teams or across

organizations.

4. Industry Platforms and Repositories: Several industry-specific platforms and repositories

have been established to facilitate the sharing and dissemination of SBOM documents within

particular sectors or communities.

While sharing the documents it is recommended to digitally sign the document for the clients

to confirm the authenticity and verify for any tampering. It is also important to identify which

SBOM needs to be made public or private while sharing.

 Version 1.0 Dated 03.10.2024 Page 34

6. Vulnerability Tracking and Analysis in SBOM

This chapter discusses vulnerability tracking and analysis using Software Bill of Materials (SBOM)

Vulnerability Exchange Document (VEX) and Common Security Advisory Framework (CSAF). VEX

facilitates standardized sharing of vulnerability information, while CSAF provides a structured

framework for describing security advisories.

a) Design a VEX Document: The Vulnerability Exchange Document (VEX) document should be

designed by the organization or entity responsible for managing the software supply chain

(e.g. supplier) after a vulnerability is discovered, informing customers about the exploitability

status to allow consumers to prioritize their remediation efforts. This should include a team

of software developers, vendors, or organizations involved in procurement and compliance

responsible for all the tracking and analysis of the vulnerability in the software. It is an iterative

process and the VEX document gets updated with each update in the vulnerability including

the time taken by the supplier along with remediation, workarounds, restart/downtime

required, scores, and risks, the VEX document must include the following about the status of

vulnerability in specific software products:

• Not affected – No remediation is required regarding this vulnerability.

• Affected – Actions are recommended to remediate or address this vulnerability.

• Fixed – Represents that these product versions contain a fix for the vulnerability.

• Under Investigation – It is not yet known whether these product versions are affected

by the vulnerability. An update will be provided in a later release.

b) Adoption of Common Security Advisory Framework (CSAF): Subsequently, after the VEX

document the supplier should provide the CSAF advisory, which includes detailed information

about the vulnerability, such as a description, affected product versions, severity assessment,

and recommended mitigation steps. This can be understood by the following example:

Figure 7: Vulnerability Tracking and Analysis in SBOM Steps Sequence Example

Vulnerability
Discovery

VEX Document
Publication

CSAF Advisory
Publication

Patch and
Mitigation

Instructions

Ongoing
Communication

SBOM
Integration

 Version 1.0 Dated 03.10.2024 Page 35

The log4j vulnerability serves as an illustration to map and describe the concept outlined in

the figure above.

i. Vulnerability Discovery: In December 2021, a critical vulnerability was discovered in

the widely used Log4j logging library.

ii. VEX Publication (1 week): Within a week, the Apache Software Foundation (the

maintainers of Log4j) published a VEX document, stating that the vulnerability was

"Exploitable".

iii. CSAF Publication (3 weeks): Approximately three weeks after the initial discovery, the

Apache Software Foundation released a CSAF advisory with detailed information

about the Log4j vulnerability. The CSAF advisory included a description of the

vulnerability, affected versions, a CVSS score of 10.0 (critical severity), and mitigation

steps.

iv. Patch/Mitigation Instructions: The CSAF advisory provided guidance for users on how

to update to a patched version of Log4j or implement other mitigations to address the

vulnerability.

v. Ongoing Updates: The Apache Software Foundation continued to monitor the situation

and provide updates as new information or additional mitigation strategies became

available.

vi. SBOM Integration: Organizations that had the Log4j library included in their software

components were able to identify the affected parts of their systems by integrating the

VEX and CSAF data into their SBOM. This allowed them to prioritize the remediation

efforts and ensure their systems were protected against the Log4Shell vulnerability.

c) Integration with diverse vulnerability databases and advisory: Suppliers and consumers can

integrate their SBOM data with vulnerability databases, CERT-In vulnerability notes, alerts,

threat intelligence platforms and vendor-specific advisories, enabling comprehensive visibility

into their software's security posture. Suppliers directly integrate SBOM data to map

components to known vulnerabilities, then provide the enhanced SBOM to customers.

Consumers leverage APIs, data feeds, or manual processes to integrate SBOM with

vulnerability data, allowing them to identify and prioritize remediation.

 Version 1.0 Dated 03.10.2024 Page 36

d) Implement shift-left approach and vulnerability scanning: Suppliers should implement shift-

left vulnerability scanning by integrating security tools into their software development

pipeline. This involves automatically analyzing the SBOM data to identify vulnerabilities in the

software components during the early stages of the SDLC, such as the build and packaging

phases.

 Version 1.0 Dated 03.10.2024 Page 37

7. Recommendations and Best Practices

This chapter delves into practical recommendations and best practices for effectively managing

SBOM to enhance software supply chain security.

7.1 Recommendations

7.1.1 All the government, public sector, essential services organizations and organizations

involved with software exports and software services industry should include

requirements for SBOM in all their software and solutions Purchase/Procurement.

7.1.2 All software supplied to the government, public sector & essential services

organizations/departments must be accompanied by a complete SBOM.

7.1.3 All government, public sector and essential services organizations/departments must

ensure to maintain SBOM of the software being used, procured and developed.

7.1.4 The SBOM of the software supplied to the government and public sector

organizations/departments must include the data fields mentioned in Chapter 4, section

4.2 of this document.

7.1.5 The format to generate the SBOM of the software supplied to government and public

sector organizations/departments should be Software Package Data eXchange (SPDX)

or CycloneDX.

7.1.6 The software developer/integrator organization that supplies software to government and

public sector organizations/departments should design a Vulnerability Exchange

Document (VEX) after a vulnerability is discovered informing customers about the

exploitability status to allow consumers to prioritize their remediation efforts. The VEX

document must include the following about the status of vulnerability in specific software

products:

• Not affected – No remediation is required regarding this vulnerability.

• Affected – Actions are recommended to remediate or address this vulnerability.

• Fixed – Represents that these product versions contain a fix for the vulnerability.

• Under Investigation – It is not yet known whether these product versions are affected

 by the vulnerability. An update will be provided in a later release.

 Version 1.0 Dated 03.10.2024 Page 38

 Subsequently, after the VEX document, the supplier should provide the CSAF advisory,

which includes detailed information about the vulnerability, such as a description, affected

product versions, severity assessment, recommended mitigation steps etc.

7.1.7 Software Developer/Consumer/Integrator organizations should integrate their SBOM

data with vulnerability databases, CERT-In vulnerability notes, alerts, threat intelligence

platforms and vendor-specific advisories, enabling comprehensive visibility into their

software's security posture.

7.1.8 Consumer organizations should update their own SBOM to reflect applied patches or

mitigations.

7.1.9 A separate SBOM for each software version, updating it only when additional component

information is provided or SBOM errors are corrected.

7.1.10 The consumer organizations (especially the government and public sector organisations)

should map and develop an internal SBOM on the basis of the SBOM provided by the

supplier.

7.1.11 Security teams of Software consumer organizations should include SBOM inventory in

the workflow of vulnerability management.

7.1.12 Regular audits and assessments of SBOM processes should be conducted to ensure

accuracy and completeness.

7.1.13 Consumer organizations should combine component data from SBOM with vulnerability

status information from VEXes to provide an up-to-date view of the status of

vulnerabilities to enable a targeted approach to identifying and addressing software

vulnerabilities.

7.1.14 It should be ensured the SBOM data is stored and transmitted securely, using encryption,

access controls, and other security measures to protect the sensitive information.

7.1.15 Establish workflows to regularly update the SBOM as new software components are

 introduced or existing ones are updated.

 Version 1.0 Dated 03.10.2024 Page 39

7.2 Best Practices

7.2.1 Ensure the SBOM captures detailed metadata, such as component names, versions,

 licenses, and unique identifiers.

7.2.2 Integrate SBOM generation into the secure software development lifecycle (SSDLC) &

CI/CD pipelines to maintain the SBOM's accuracy and timeliness

7.2.3 Implement risk-based approaches to prioritize the remediation of vulnerabilities based on

factors like severity, exploitability, and potential business impact.

7.2.4 Establish clear policies and procedures for the handling, sharing, and distribution of the

SBOM data.

7.2.5 The SBOM data should be generated in such a way that it can be utilized to demonstrate

compliance and fulfil regulatory reporting obligations related to software supply chain

security.

7.2.6 Implement alerting systems to promptly notify relevant stakeholders about critical security

events, enabling timely remediation.

7.2.7 Develop detailed playbooks for responding to security incidents and managing the

remediation of vulnerabilities identified through the SBOM analysis.

7.2.8 Adopt a zero-trust security model to verify every user and device trying to connect to the

network, enhancing security by eliminating implicit trust assumptions.

7.2.9 Implement Multi Factor Authentication (MFA) mechanisms to add an extra layer of

security, reducing the risk of unauthorized access to systems and data.

7.2.10 Conduct periodic vulnerability assessments and measurements to identify and address

security weaknesses promptly.

7.2.11 Implement continuous monitoring of software components and dependencies to detect

vulnerabilities and address them promptly.

7.2.12 Obtain assurances from third-party software vendors and suppliers regarding the

accuracy, completeness, and timeliness of SBOM provided, and establish contractual

agreements to ensure compliance with SBOM requirements.

7.2.13 Perform thorough analysis to ensure that the licenses of all software components within

an application or software are compatible with each other. Identify any conflicts or

restrictions that may arise from combining different licensed components.

 Version 1.0 Dated 03.10.2024 Page 40

7.2.14 Ensure the provision and regular updating of VEX documents alongside CSAF-based

advisories with any changes, additions, or updates made to the SBOM.

7.2.15 Provide comprehensive training and awareness programs to educate employees, from

developers to security teams, on the importance of SBOM and its role in enhancing

software supply chain security.

7.2.16 If the primary component relies on multiple instances with varying meta-information, each

instance must be listed separately with its individual meta-information.

