
Build Tracing

Armijn Hemel, MSc
Tjaldur Software Governance Solutions



December 17, 2024 OpenChain Korea WG 2

About me

● computer science at Utrecht University (NL)
● created first prototype of NixOS distribution, based on Nix package 

manager

● former board member at NLUUG & NixOS Foundation
● former core team gpl-violations.org
● creator of (open source licensed) tools for binary 

analysis/software composition analysis & build analysis
● license compliance audits, defending against GPL trolls, M&A 

work, and so on



December 17, 2024 OpenChain Korea WG 3

Possible views on software

● there are three possible views to look at software:
● source code: what license/author/copyright do files or packages have?
● build time: how were programs built and with which source code?
● run time: how do programs combine/interact at run time?



December 17, 2024 OpenChain Korea WG 4

Source code view on software

● the source code view has been the focus of SBOMs:
● package level license
● file level license
● author/copyright
● dependencies
● etc.

● but it doesn't give us the full picture of how software is built, 
installed and used and can lead to confusion.



December 17, 2024 OpenChain Korea WG 5

Example: glibc



December 17, 2024 OpenChain Korea WG 6

GPL code in a library?!!?!11!?



December 17, 2024 OpenChain Korea WG 7

What's going on?

● in glibc there are pure GPL-2.0 licensed files, but these are 
individual tools not part of the library part of glibc. Tool example: 
“ldconfig”

● in many packages you can find files that are not part of what is 
installed on a machine/device:

● build files (GNU autotools, custom scripts, etc.)
● translation files

● these might only be used during build time and not be shipped in 
an installable package, or in a separate package, or not included 
in a build.



December 17, 2024 OpenChain Korea WG 8

Build time view

● the source code view is correct, but it misses some information, 
namely “what source went into a particular binary?”

● knowing for each binary which source code files were used, 
allows you to:

● zoom in on license/security issues
● reduce problem space and triage more effectively

● note: SPDX actually has a “build profile” but it is not granular 
enough for information related to individual binaries



December 17, 2024 OpenChain Korea WG 9

How to find out what went into a specific binary?

● two ways:
● fingerprinting - only needs a binary, but is not very accurate
● build tracing - very accurate, but needs access to source code and the 

build process (you need to be able to rebuild)



December 17, 2024 OpenChain Korea WG 10

Fingerprinting

● extract symbols (function names, strings) and map to a database 
of same information extracted from known source code

● risk of missing files that were used (example: static ELF linking 
means far fewer symbols available for fingerprinting)

● makes no sense if you have source code and can rebuild!
● I make (open source licensed) tools for binary analysis 

fingerprinting. Binary Analysis Next Generation (BANG) 
https://github.com/armijnhemel/binaryanalysis-ng/

https://github.com/armijnhemel/binaryanalysis-ng/


December 17, 2024 OpenChain Korea WG 11

Tracing a build

● instrument the unmodified build (with strace or BPF) and record 
which files are being opened, created, renamed, and so on, and 
create a build graph to track which files were used to create a 
binary.

● This works really well:
● ASE2014 conference: “Tracing Software Build Processes to Uncover 

License Compliance Inconsistencies”
● Authors - Sander van der Burg, Eelco Dolstra, Shane McIntosh, Julius 

Davies, Daniel M. German, Armijn Hemel



December 17, 2024 OpenChain Korea WG 12

Example: FFmpeg

● FFmpeg has switches to include/exclude GPL licensed code
● by just looking at the source code it is very hard to find out what 

will be used (build script parsing is not the way)
● by tracking the files that are opened in the build you can very 

easily see which files are used
● we used build tracing to uncover license inconsistencies in 

FFmpeg (which were then fixed by FFmpeg). These were very 
hard to spot otherwise.



December 17, 2024 OpenChain Korea WG 13

Example projects using tracing

● some projects using (a form of) tracing
● Eclipse Adoptium
● TraceCode
● https://github.com/armijnhemel/tracing_software_packages
● build-recorder: https://github.com/eellak/build-recorder
● ESSTRA: https://github.com/sony/esstra/

https://github.com/armijnhemel/tracing_software_packages
https://github.com/eellak/build-recorder
https://github.com/sony/esstra/


December 17, 2024 OpenChain Korea WG 14

Build tracing project

● I am making proper tools (work in progress, still early days) to 
make this all a bit easier:

● https://github.com/armijnhemel/tracing_software_packages
● this work is funded through NGI Zero Core, a fund established by 

NLnet with financial support from the European Commission's 
Next Generation Internet program.

https://github.com/armijnhemel/tracing_software_packages


December 17, 2024 OpenChain Korea WG 15

Run time view

● the run time view could include:
● all run time dependencies
● configuration

● personally I think that this is impossible to capture in SBOMs for 
run time environments:

● dynamic ELF loading, dynamic Java class loading, WebAssembly, 
JavaScript, etc.

● Nix closures/expressions probably capture more information!
● please talk to me to learn more 



December 17, 2024 OpenChain Korea WG 16

Build tracing specifics: how it works (1)

● these instructions are for Linux
● standard Linux tools (strace), with a bit of custom glue (open source 

licensed)
● no BPF

● only a subset of system calls are traced:
● file related (open, close, stat + friends)
● process related (vfork, clone + friends)
● file descriptor related (dup, pipe, tee + friends)



December 17, 2024 OpenChain Korea WG 17

Build tracing specifics: how it works (2)

● trace output is written to a file per PID
● files are parsed to create a build graph:

● which process creates which other process?
● inputs and outputs

● a build graph can be traversed to answer the question:
● which process created which binary and which inputs were involved?

● let's look at some example trace files



December 17, 2024 OpenChain Korea WG 18

Build tracing specifics: how it works (3)

● making sure your code is complete and corresponding:
● copy files that were opened/stat'ed
● rebuild
● compare the binaries

● let's look at another example (Linux kernel 6.11)
● original number of files
● copied number of files



December 17, 2024 OpenChain Korea WG 19

Some statistics

● Trace files can get BIG and there are MANY:
● Linux kernel 6.11 build trace files are ~1.4 GiB (or 3 GiB when tracing 

all system calls)
● ~25,000 trace files

● PID wrapping can be an issue, but should not be a problem on 
modern systems (max PID: 4M+)

● tracing makes a build slower



December 17, 2024 OpenChain Korea WG 20

What to do and not to do when tracing

● don't trace every build: ideally you should only have to trace a 
build once

● only retrace when code changes significantly
● rebuild to see if you are “complete and corresponding”
● do not base your license analysis only on the copied files (there 

could be license references somewhere else), but use it to have a 
better understanding of what you are actually building



December 17, 2024 OpenChain Korea WG 21

Tracing software packages project

● https://github.com/armijnhemel/tracing_software_packages
● currently:

● tracing a build and writing files
● copying files

● planned:
● graph traversal
● data backends (scancode, vulnerablecode)

● welcome to contribute (code, funding)

https://github.com/armijnhemel/tracing_software_packages


December 17, 2024 OpenChain Korea WG 22

Conclusion

● Build tracing can be a very effective way to get more granular 
information 

● If you need more information: armijn@tjaldur.nl
● https://github.com/armijnhemel/tracing_software_packages
● this work is funded through NGI Zero Core, a fund established by 

NLnet with financial support from the European Commission's 
Next Generation Internet program.

mailto:armijn@tjaldur.nl
https://github.com/armijnhemel/tracing_software_packages

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

