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About me

● computer science at Utrecht University (NL)
● created first prototype of NixOS distribution, based on Nix package 

manager

● former board member at NLUUG & NixOS Foundation
● former core team gpl-violations.org
● creator of (open source licensed) tools for binary 

analysis/software composition analysis & build analysis
● license compliance audits, defending against GPL trolls, M&A 

work, and so on
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Possible views on software

● there are three possible views to look at software:
● source code: what license/author/copyright do files or packages have?
● build time: how were programs built and with which source code?
● run time: how do programs combine/interact at run time?
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Source code view on software

● the source code view has been the focus of SBOMs:
● package level license
● file level license
● author/copyright
● dependencies
● etc.

● but it doesn't give us the full picture of how software is built, 
installed and used and can lead to confusion.
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Example: glibc
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GPL code in a library?!!?!11!?
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What's going on?

● in glibc there are pure GPL-2.0 licensed files, but these are 
individual tools not part of the library part of glibc. Tool example: 
“ldconfig”

● in many packages you can find files that are not part of what is 
installed on a machine/device:

● build files (GNU autotools, custom scripts, etc.)
● translation files

● these might only be used during build time and not be shipped in 
an installable package, or in a separate package, or not included 
in a build.
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Build time view

● the source code view is correct, but it misses some information, 
namely “what source went into a particular binary?”

● knowing for each binary which source code files were used, 
allows you to:

● zoom in on license/security issues
● reduce problem space and triage more effectively

● note: SPDX actually has a “build profile” but it is not granular 
enough for information related to individual binaries
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How to find out what went into a specific binary?

● two ways:
● fingerprinting - only needs a binary, but is not very accurate
● build tracing - very accurate, but needs access to source code and the 

build process (you need to be able to rebuild)
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Fingerprinting

● extract symbols (function names, strings) and map to a database 
of same information extracted from known source code

● risk of missing files that were used (example: static ELF linking 
means far fewer symbols available for fingerprinting)

● makes no sense if you have source code and can rebuild!
● I make (open source licensed) tools for binary analysis 

fingerprinting. Binary Analysis Next Generation (BANG) 
https://github.com/armijnhemel/binaryanalysis-ng/

https://github.com/armijnhemel/binaryanalysis-ng/


December 17, 2024 OpenChain Korea WG 11

Tracing a build

● instrument the unmodified build (with strace or BPF) and record 
which files are being opened, created, renamed, and so on, and 
create a build graph to track which files were used to create a 
binary.

● This works really well:
● ASE2014 conference: “Tracing Software Build Processes to Uncover 

License Compliance Inconsistencies”
● Authors - Sander van der Burg, Eelco Dolstra, Shane McIntosh, Julius 

Davies, Daniel M. German, Armijn Hemel
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Example: FFmpeg

● FFmpeg has switches to include/exclude GPL licensed code
● by just looking at the source code it is very hard to find out what 

will be used (build script parsing is not the way)
● by tracking the files that are opened in the build you can very 

easily see which files are used
● we used build tracing to uncover license inconsistencies in 

FFmpeg (which were then fixed by FFmpeg). These were very 
hard to spot otherwise.
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Example projects using tracing

● some projects using (a form of) tracing
● Eclipse Adoptium
● TraceCode
● https://github.com/armijnhemel/tracing_software_packages
● build-recorder: https://github.com/eellak/build-recorder
● ESSTRA: https://github.com/sony/esstra/

https://github.com/armijnhemel/tracing_software_packages
https://github.com/eellak/build-recorder
https://github.com/sony/esstra/
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Build tracing project

● I am making proper tools (work in progress, still early days) to 
make this all a bit easier:

● https://github.com/armijnhemel/tracing_software_packages
● this work is funded through NGI Zero Core, a fund established by 

NLnet with financial support from the European Commission's 
Next Generation Internet program.

https://github.com/armijnhemel/tracing_software_packages
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Run time view

● the run time view could include:
● all run time dependencies
● configuration

● personally I think that this is impossible to capture in SBOMs for 
run time environments:

● dynamic ELF loading, dynamic Java class loading, WebAssembly, 
JavaScript, etc.

● Nix closures/expressions probably capture more information!
● please talk to me to learn more 
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Build tracing specifics: how it works (1)

● these instructions are for Linux
● standard Linux tools (strace), with a bit of custom glue (open source 

licensed)
● no BPF

● only a subset of system calls are traced:
● file related (open, close, stat + friends)
● process related (vfork, clone + friends)
● file descriptor related (dup, pipe, tee + friends)
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Build tracing specifics: how it works (2)

● trace output is written to a file per PID
● files are parsed to create a build graph:

● which process creates which other process?
● inputs and outputs

● a build graph can be traversed to answer the question:
● which process created which binary and which inputs were involved?

● let's look at some example trace files
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Build tracing specifics: how it works (3)

● making sure your code is complete and corresponding:
● copy files that were opened/stat'ed
● rebuild
● compare the binaries

● let's look at another example (Linux kernel 6.11)
● original number of files
● copied number of files
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Some statistics

● Trace files can get BIG and there are MANY:
● Linux kernel 6.11 build trace files are ~1.4 GiB (or 3 GiB when tracing 

all system calls)
● ~25,000 trace files

● PID wrapping can be an issue, but should not be a problem on 
modern systems (max PID: 4M+)

● tracing makes a build slower
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What to do and not to do when tracing

● don't trace every build: ideally you should only have to trace a 
build once

● only retrace when code changes significantly
● rebuild to see if you are “complete and corresponding”
● do not base your license analysis only on the copied files (there 

could be license references somewhere else), but use it to have a 
better understanding of what you are actually building
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Tracing software packages project

● https://github.com/armijnhemel/tracing_software_packages
● currently:

● tracing a build and writing files
● copying files

● planned:
● graph traversal
● data backends (scancode, vulnerablecode)

● welcome to contribute (code, funding)

https://github.com/armijnhemel/tracing_software_packages
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Conclusion

● Build tracing can be a very effective way to get more granular 
information 

● If you need more information: armijn@tjaldur.nl
● https://github.com/armijnhemel/tracing_software_packages
● this work is funded through NGI Zero Core, a fund established by 

NLnet with financial support from the European Commission's 
Next Generation Internet program.

mailto:armijn@tjaldur.nl
https://github.com/armijnhemel/tracing_software_packages
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